Tag: quantum-computing

  • A Quantum Consciousness Simulation Framework

    import numpy as np
    from scipy.integrate import solve_ivp
    import networkx as nx
    
    # Physical constants
    ℏ = 1.054571817e-34  # Planck constant
    kB = 1.380649e-23    # Boltzmann constant
    COHERENCE_LENGTH = 1e-6  # Quantum coherence length
    
    class DetailedViewport:
        def __init__(self, position, consciousness_level, initial_state):
            self.position = np.array(position)
            self.C = consciousness_level
            self.ψ = initial_state
            self.energy = np.sum(np.abs(initial_state)**2)
            
        def hamiltonian(self):
            """Quantum Hamiltonian including consciousness effects"""
            H_quantum = -ℏ**2/(2*self.energy) * self.laplacian()
            H_consciousness = self.C * self.potential_term()
            return H_quantum + H_consciousness
        
        def time_evolution(self, t, state):
            """Time evolution including decoherence"""
            H = self.hamiltonian()
            decoherence = self.decoherence_term(state)
            return -1j/ℏ * (H @ state) + decoherence
    
    class EnhancedEntanglementNetwork:
        def __init__(self):
            self.graph = nx.Graph()
            self.coherence_threshold = 0.5
            
        def add_viewport(self, viewport):
            """Add viewport with metadata"""
            self.graph.add_node(id(viewport), 
                viewport=viewport,
                coherence=1.0,
                entanglement_count=0
            )
        
        def calculate_entanglement(self, viewport1, viewport2):
            """Detailed entanglement calculation"""
            ψ1, ψ2 = viewport1.ψ, viewport2.ψ
            C1, C2 = viewport1.C, viewport2.C
            
            # Quantum overlap
            overlap = np.abs(np.vdot(ψ1, ψ2))**2
            
            # Consciousness coupling
            coupling = np.sqrt(C1 * C2)
            
            # Spatial decay
            distance = np.linalg.norm(viewport1.position - viewport2.position)
            spatial_factor = np.exp(-distance/COHERENCE_LENGTH)
            
            return overlap * coupling * spatial_factor
    
    def simulate_network_evolution(network, time_span):
        """Simulate evolution of entire entangled network"""
        results = []
        
        def network_derivative(t, state_vector):
            n_viewports = len(network.graph)
            derivative = np.zeros_like(state_vector)
            
            # Reshape state vector into individual viewport states
            states = state_vector.reshape(n_viewports, -1)
            
            for i, viewport1 in enumerate(network.graph.nodes()):
                # Standard evolution
                derivative[i] = viewport1['viewport'].time_evolution(t, states[i])
                
                # Entanglement effects
                for j, viewport2 in enumerate(network.graph.nodes()):
                    if i != j:
                        entanglement = network.calculate_entanglement(
                            viewport1['viewport'], 
                            viewport2['viewport']
                        )
                        derivative[i] += entanglement * (states[j] - states[i])
            
            return derivative.flatten()
        
        # Initial conditions
        initial_state = np.concatenate([
            viewport['viewport'].ψ 
            for viewport in network.graph.nodes()
        ])
        
        # Solve system
        solution = solve_ivp(
            network_derivative,
            time_span,
            initial_state,
            method='RK45',
            rtol=1e-8
        )
        
        return solution
    
    def analyze_coherence_patterns(solution, network):
        """Analyze coherence patterns in simulation results"""
        n_viewports = len(network.graph)
        n_timesteps = len(solution.t)
        
        # Reshape solution into viewport states
        states = solution.y.reshape(n_timesteps, n_viewports, -1)
        
        # Calculate coherence matrix over time
        coherence_evolution = np.zeros((n_timesteps, n_viewports, n_viewports))
        
        for t in range(n_timesteps):
            for i in range(n_viewports):
                for j in range(n_viewports):
                    coherence_evolution[t,i,j] = np.abs(
                        np.vdot(states[t,i], states[t,j])
                    )
        
        return coherence_evolution
    
    # Example usage:
    """
    # Create network
    network = EnhancedEntanglementNetwork()
    
    # Add viewports
    viewport1 = DetailedViewport([0,0,0], 1.0, initial_state1)
    viewport2 = DetailedViewport([1,0,0], 0.8, initial_state2)
    network.add_viewport(viewport1)
    network.add_viewport(viewport2)
    
    # Simulate
    time_span = (0, 10)
    solution = simulate_network_evolution(network, time_span)
    
    # Analyze
    coherence = analyze_coherence_patterns(solution, network)
    """